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Abstract: The impairment of glucose metabolism may lead to type 2 diabetes and the malfunction of lipid metabolism 

contributing to metabolic syndrome, which increases risk of heart disease, vascular disease, and type 2 diabetes. Our 

previous study provided evidence for involvement of hepatic glucose metabolic disorder in onset and progress of diabetes 

in Spontaneously Diabetic Torii (SDT) rats. As it is increasingly important to elucidate the mechanism of onset of 

diabetes and to develop drugs to prevent diabetic pathological progress, SDT rat should offer a highly useful model of 

spontaneous diabetic onset for such studies. In addition, abnormality in triglyceride (TG) absorption and impaired lipid 

catabolism antecedent to hypoinsulinemia/hyperglycemia seem to cause postprandial hypertriglyceridemia in SDT rat; 

hence, the characteristics of lipid metabolism in SDT rat can be useful in studies of diabetic hypertriglyceridemia and TG 

metabolism. 
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INTRODUCTION 

 In recent years, great attention has been focused on high 
risks of development of cardiovascular diseases in non-dia-
betic patients with glucose metabolic disorder and of dia-
betes in patients with glucose metabolic disorder. Similarly, 
hypertriglyceridemia is one of the major abnormalities found 
in diabetes with insulin deficiency [1], and is thought closely 
related to coronary heart disease and atherosclerosis, 
important complications of diabetes [2, 3]. Failures in any of 
the metabolic processes can lead to serious health problems: 
the impairment of glucose metabolism may lead type 2 
diabetes, and the malfunction of lipid metabolism contributes 
to metabolic syndrome, which is a cluster of conditions that 
puts people at increased risk of heart disease, vascular 
disease, and type 2 diabetes. These epidemiological situat-
ions make it important to study diabetic pathogenesis to 
prevent progress to diabetes. 

 Among studies on the developmental stage of diabetes, 
particularly little has been published on hepatic glucose 
metabolism and triglyceride (TG) metabolism. In our 
previous studies, we focused on the liver, the major organ 
involved in glucose metabolism, to investigate changes in 
hepatic glucose metabolism from pre-diabetic to diabetic 
stages, with the aim of identifying the molecules involved in 
onset of diabetes [4]. Furthermore, we examined the 
contribution of TG absorption and clearance to diabetic 
hypertriglyceridemia in Spontaneously Diabetic Torii (SDT) 
rats [5]. SDT rat is a model of non-obese type 2 diabetes 
with impaired secretion of insulin [6, 7]. In male SDT rats, 
plasma glucose levels spontaneously increased around 16 
weeks of age (Fig. 1A). The plasma insulin levels of SDT 
rats at 20 weeks or older age were significantly lower than 
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those of age-matched Sprague-Dawley (SD) rats (Fig. 1B). 
Significant decreases in body weight were observed in 
diabetic SDT rats. The plasma TG and total cholesterol 
levels remained unchanged at 16 weeks of age, but plasma 
TG level increased after 30 weeks of age (Fig. 1C). 
Interestingly, increased plasma TG level elevation after oil 
loading was observed in SDT rats before hyperglycemia/ 
hypertriglyceri-demia [5], as was impaired glucose tolerance 
in pre-diabetic state [8]. Most of all, the characteristic that 
onset of diabetes is delayed until around 20 weeks of age 
makes this animal a highly effective model in which to 
pursue the mechanism of development of diabetes. 

GLUCOSE METABOLISM 

 Glucokinase (GK) plays a critical role in metabolism of 
glucose in liver because it appears at the first step of 
glycolysis [9]. In SDT rat, decreased mRNA expression and 
activity of GK were observed from pre-diabetic 16 weeks of 
age [4], suggesting that a decrease in GK is partly 
responsible for a mild increase in blood glucose in SDT rat. 
Suppressed GK is found in NIDDM patients [10, 11] and 
some diabetic animal models (e.g. Zucker Diabetic Fatty 
(ZDF) rat [12], streptozotocin (STZ)-induced rat [13]); 
however, elevation of GK is reported in other diabetic 
animals [14-16]. Although how the difference is caused has 
not been clarified, it may be supposed that suppressed insulin 
is always accompanied by suppressed GK level. 

 Glycogen synthase (GS) and glycogen phosphorylase 
(GP) are rate-limited key enzymes of glycogen metabolism 
[17, 18]. Glycogen content was decreased in pre-diabetic 
SDT rats, and the decrease was more pronounced at older 
age [4]. A decreased GS activity and a moderate decrease in 
glycogen store preceded development of diabetes in SDT rat. 
In diabetic state, GP activity and mRNA expression in liver 
were also decreased in SDT rats. GP activity is considered to 
be decreased as a consequence of elevation of serum glucose  
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and reduction of glycogen stock. GP is known to exert high 
activity in response to attenuated insulin signal due to insulin 
deficiency, and low expression or activity in association with 
an increase in blood glucose, a decrease in glycogen store, an 
enhancement of gluconeogenesis [17], and an increase in 
glucagon/insulin ratio [19]. The glycogen metabolism 
pathway in diabetic SDT rats is broken down, thus glycogen 
can not play a role in glucose supply [4]. At least an increase 
in blood glucose and a decrease in glycogen store are 
considered to be applicable to the SDT model. Insulin 

treatment ameliorates hyperglycemia and prevents diabetic 
complications in SDT rats [20-23]. However, exogenous 
insulin itself has affected glucose metabolism in liver, and 
thus a drug that directly decreases blood glucose maybe 
useful to study effects of hypergycemia in metabolism. 
Phlorizin, a specific inhibitor of sodium-coupled glucose 
transporter (SGLTs), is reported to cause excretion of 
glucose into urine and lower blood glucose levels in several 
diabetic animal models [24, 25]. SDT rats treated with 
phlorizin for 4 weeks from 20 weeks of age showed 

 

Fig. (1). Serial changes of biochemical parameters. (A) blood glucose, (B) insulin, and (C) TG levels in SD rats (open circles) and SDT rats 

(closed circles). Data represent means ± S.E.M. (n=6-8). **p < 0.01 (vs age-matched SD rat, unpaired t-test). 

 

Fig. (2). Effect of phlorizin on blood biochemical parameters and key enzymes mRNA expression of hepatic glucose metabolism. (A) Blood 

glucose, (B) insulin, and (C) TG levels in control SDT rats (closed circles) and phlorizin-treated SDT rats (100 mg/kg, b.i.d, s.c.; open 

circles). Relative hepatic mRNA expressions of (D) GK, (E) GS, and (F) GP after 4 weeks treatment of phlorizin (24 weeks of age). Data 

represent means ± S.E.M. (n=5-6). **p<0.01 (vs age-matched SD rat, unpaired t-test). †p<0.05 (vs control SDT rat, unpaired t-test). 
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decreased blood glucose and TG, and insulin level was 
maintained (Fig. 2A-C). As result of phlorizin treatment, 
down-regulated expression of hepatic GK, GS, and GP 
mRNAs were recovered (Fig. 2D-F). These results support 
the idea that the hyperglycemia directly controls expression 
of hepatic enzymes responsible for glycogen metabolism. 

 Rate-limited enzymes of gluconeogenesis, such as glucose-
6-phosphate (G6Pase), fructose-1, 6-bisphosphatase (FBPase), 
and phosphoenolpyruvate carboxykinase (PEPCK) [26-28], also 
play important roles in glucose metabolism. Expression of these 
mRNAs was increased in diabetic, but not in pre-diabetic SDT 
rats [4]; hence the key enzymes of gluconeogenesis are up-
regulated in SDT rats after progression of diabetes. 

LIPID METABOLISM 

 Decreased signals of insulin and leptin cause diabetic 
hyperphagia [29], and explains for hypertriglyceridemia in 
diabetes. In diabetic state, hyperphagia leads to intestinal 
hypertrophy [30], which contributes to increased cholesterol 
synthesis and lipid absorption. Therefore, the impaired 
chylomicron catabolism is closely associated with diabetic 
hypertriglyceridemia. In addition, overproduction of the TG-
rich lipoprotein may contribute to diabetic hypertriglyceri-
demia. Earlier studies indicated that increased TG absorption 
from the small intestine contributes to hypertriglyceridemia 
in diabetes [31-33]. 

 SDT rat shows marked hypertriglyceridemia concomitant 
with hyperglycemia/hypoinsulinemia [6, 7] (Fig. 1C). The 
major increase of TG in the circulation of SDT rats occurs in 
the TG-rich lipoprotein fraction chylomicron [5]. Lower 
plasma leptin level followed by hyperphagia [5] seems to 
cause intestinal hypertrophy in SDT rats [34] (Fig. 3). The 
small intestine plays a predominant role in the absorption of 
dietary lipids. Abnormal expression and/or activity of enzymes 
involved in intestinal TG synthesis and chylomicron assemb-
ling such as acyl-CoA:monoacylglycerol acyltransferase 2 
(MGAT2), acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1), 
and microsomal triglyceride transfer protein (MTP) have been 
observed in some in vitro and in vivo models of diabetes [35-
37]. SDT rats have increased intestinal mRNA of these enzymes 
and transfer protein [5] in addition to intestinal hypertrophy. 
Therefore, it is conceivable that increased intestinal mRNAs of 
these enzymes and transfer protein related to postprandial TG 
absorption are caused by extreme hypoinsulinemia/hyper-
glycemia. 

 Plasma TG and chylomicron levels are increased in 
diabetic animal models [38-41]. After olive oil loading, SDT 

rats showed higher plasma TG level compared to that of 
normal rats [5]. SDT rats also showed increased TG in 
lymph chylomicron and plasma TG accumulation after oil 
loading in diabetic state, indicating that postprandial TG 
absorption from intestine is increased in SDT rats in diabetic 
state (Fig. 4A, B). Interestingly, sustained plasma TG level 
elevation after oil loading was also observed in SDT rats 
before hyperglycemia/hypertriglyceridemia. In contrast, TG 
in lymph chylomicron and plasma TG accumulation after oil 
loading was not different from those of SD rats at this age 
(Fig. 4A, B). Significant delay in TG clearance was observed 
from 8 weeks of age (Fig. 5A, B). These results clearly 
indicate impaired TG catabolism of SDT rats from pre-
diabetic stage and excess TG absorption at diabetic stage [5]. 
In a model of impaired insulin secretion (such as STZ-
induced diabetic rats), the high TG levels are probably due to 
low TG clearance because of reduced adipose tissue 
lipoprotein lipase (LPL) activity [42]. Lower LPL expression 
affects impaired TG catabolism in SDT rats (Fig. 5C). 
Diabetic SDT rats showed reduced hepatic TG secretion 
(Fig. 4C) as same as STZ rats. Plasma insulin level in STZ 
rats was negatively correlated with lipids and apoB in 
plasma and TG-rich lipoprotein [43]. Also, Mason et al. 
reported that decreased TGSR in STZ rats was improved by 
insulin treatment [44]. Therefore, the hypoinsulinemic 
environment may cause decreased TGSR in SDT rats. This 
characteristic on TGSR is different from hypertriglyceri-
demic model with insulin resistance and hyperglycemia that 
shows increased VLDL-TG. Hepatocytes from obese Zucker 
rats displayed higher total VLDL-TG secretion [45] and 
acute glucose infusion elevated plasma TG concentration 
[46]. 

CONCLUSION 

 Our previous study provided evidence for involvement of 
hepatic glucose metabolic disorder in onset and progress of 
diabetes in SDT rat [4]. As it is increasingly important to 
elucidate the mechanism of onset of diabetes and to develop 
drugs to prevent diabetic pathological progress, SDT rat 
should offer a highly useful model of spontaneous diabetic 
onset for such studies. In addition, abnormality in TG 
absorption and impaired lipid catabolism antecedent to 
hypoinsulinemia/hyperglycemia seem to cause postprandial 
hypertriglyceridemia in SDT rat [5]; hence, the character-
istics of lipid metabolism in SDT rat can be useful in studies 
of diabetic hypertriglyceridemia and TG metabolism. SDT 
rats show impaired glucose tolerance and insulin response to 
oral glucose loading in pre-diabetic state [8]. The relation-

 

Fig. (3). Histopathological changes of small intestine. Typical microphotographs of jejunum from (A) SD rat and (B) SDT rat at 30 weeks of age 

(HE stain; bar=400 m). (C) Diameter of jejunum (n=6). Open Column: SD rat, closed column: SDT rat. **p<0.01 (vs age-matched SD rat, unpaired 

t-test). 
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ship between impaired lipid catabolism and impaired glucose 
tolerance in the pre-diabetic state also seems to offer some 
keys towards clarification of the onset mechanism of diabetes. 
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